Thông tin cá nhân
- Chuyên ngành: Kỹ thuật điện
- Chức vụ:
- Chức danh: Giảng viên
Bộ môn Kỹ thuât Điện - Khoa Điện Điện tử, Trường Đại học Nha Trang
Đã giảng dạy các HP : Ổn định hệ thống điện, Giải tích hệ thống điện, Máy điện, Ngôn ngữ lập trình, Vẽ Điện Điện tử, Máy điện và Khí cụ điện, Vật liệu điện
Ngày nhập học | Chuyên ngành | Hình thức đào tạo | Nơi đào tạo | Học vị | Ngày tốt nghiệp | Chuyên ngành chính | Trường cử đi |
---|---|---|---|---|---|---|---|
01/09/2006 | Hệ thống năng lượng | Chính quy | Trường ĐH Bách khoa TP.HCM, Việt Nam | Đại học | 20/10/2011 | ||
01/09/2012 | Điện tử và máy tính | Chính quy | Trường ĐH RMIT, Việt Nam | Thạc sỹ | 29/11/2014 | ||
01/02/2019 | Kỹ thuật điện | Tập trung | Trường ĐH Khoa học và Công nghệ Quốc gia Cao Hùng, Đài Loan | Tiến sỹ | 30/06/2022 |
SCIE paper:
[1] Nguyen, T. P., Yeh, C. T., Cho, M. Y., Chang, C. L., & Chen, M. J. (2022). Convolutional neural network bidirectional long short-term memory to online classify the distribution insulator leakage currents. Electric Power Systems Research, 208, 107923. DOI: https://doi.org/10.1016/j.epsr.2022.107923
[2] Yeh, C. T., Thanh, P. N., & Cho, M. Y. (2022). Real-time leakage current classification of 15kV and 25kV distribution insulators based on bidirectional long short-term memory networks with deep learning machine. IEEE Access, 10, 7128-7140. DOI: https://doi.org/10.1109/ACCESS.2022.3140479
[3] Thanh, P. N., Cho, M. Y., Chang, C. L., & Chen, M. J. (2022). Short-Term Three-Phase Load Prediction With Advanced Metering Infrastructure Data in Smart Solar Microgrid Based Convolution Neural Network Bidirectional Gated Recurrent Unit. IEEE Access, 10, 68686-68699. DOI: https://doi.org/10.1109/ACCESS.2022.3185747
[4] Nguyen Thanh, P., & Cho, M. Y. (2022). Insulator Leakage Current Prediction Using Hybrid of Particle Swarm Optimization and Gene Algorithm-Based Neural Network and Surface Spark Discharge Data. Computational Intelligence and Neuroscience, 2022. DOI: https://doi.org/10.1155/2022/6379141
[5] Lee, C. H., Nguyen Thanh, P., Yeh, C. T., & Cho, M. Y. (2022). Three-Phase Load Prediction-Based Hybrid Convolution Neural Network Combined Bidirectional Long Short-Term Memory in Solar Power Plant. International Transactions on Electrical Energy Systems. DOI: https://doi.org/10.1155/2022/2870668
[6] Thanh, P. N., & Cho, M. Y. (2022). Multilevel categorizing leakage current of 15 kV HDPE insulators based bidirectional gated recurrent unit. Measurement, 202, 111779. DOI: https://doi.org/10.1016/j.measurement.2022.111779
[7] Thanh, P. N., & Cho, M. Y. (2023). Online leakage current classification using convolutional neural network long short-term memory for high voltage insulators on web-based service. Electric Power Systems Research, 216, 109065. DOI: https://doi.org/10.1016/j.epsr.2022.109065
[8] Liu, W. B., Nguyen Thanh, P., Cho, M. Y., & Nguyen Da, T. (2023). Categorizing 15 kV High-Voltage HDPE Insulator’s Leakage Current Surges Based on Convolution Neural Network Gated Recurrent Unit. Energies, 16(5), 2500. DOI: https://doi.org/10.3390/en16052500
[9] Nguyen-Da, T., Li, Y. M., Peng, C. L., Cho, M. Y., & Nguyen-Thanh, P. (2023). Tourism Demand Prediction after COVID-19 with Deep Learning Hybrid CNN–LSTM—Case Study of Vietnam and Provinces. Sustainability, 15(9), 7179. DOI: https://doi.org/10.3390/su15097179
[10] Da, T. N., Thanh, P. N., & Cho, M. Y. (2024). Novel cloud-AIoT fault diagnosis for industrial diesel generators based hybrid deep learning CNN-BGRU algorithm. Internet of Things, 26, 101164. DOI: https://doi.org/10.1016/j.iot.2024.101164
[11] Da, T. N., Cho, M. Y., & Thanh, P. N. (2024). Hourly load prediction based feature selection scheme and hybrid CNN‐LSTM method for building's smart solar microgrid. Expert Systems, e13539. DOI: https://doi.org/10.1111/exsy.13539
International Conference Paper:
[1] Nguyen, T. P., Yeh, C. T., Cho, M., & Huang, Y. (2020). Complementary grid power prediction using artificial neural network in the energy management system of a disaster prevention smart solar microgrid. International Journal of Smart Grid and Clean Energy, 9(5), 879-889. DOI: https://doi.org/ 10.12720/sgce.9.5.879-889
[2] Phuong Nguyen Thanh, Chao-Tsung Yeh, Ming-Yuan Cho, “Short-term solar PV power prediction based deep learning convolutional neural network in smart solar plant.” International Conference on Environmental Quality concern, control and conservation (2022)
[3] Phuong Nguyen Thanh, Chao-Tsung Yeh, Ming-Yuan Cho, “An efficient long short-term memory approach for load power prediction in smart solar microgrid.” International Conference on Environmental Quality concern, control and conservation (2022)
[4] Thanh, P. N., Yeh, C. T., & Cho, M. Y. (2022, July). Predicting Leakage Current of Distribution Insulators Based Deep Learning Gated Recurrent Unit. In 2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE) (pp. 46-50). IEEE. DOI: https://doi.org/10.1109/ACEEE56193.2022.9851822
[5] Yeh, C. T., Thanh, P. N., Cho, M. Y., & Quoc, T. N. (2022, July). Short-Term Load Power Prediction Based Deep Learning Gated Recurrent Unit in Solar Power Plant. In 2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE) (pp. 36-40). IEEE. DOI: https://doi.org/10.1109/ACEEE56193.2022.9851878
[6] Chao-Tsung, Y., Thanh, P. N., Ming-Yuan, C., & Meng-Jie, C. (2022, July). Design and Construction of Microgrid in Small Factories. In 2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE) (pp. 85-89). IEEE. DOI: https://doi.org/10.1109/ACEEE56193.2022.9851871
[7] Da, T. N., Yimin, L., Peng, C. L., Cho, M. Y., Le Kim, K. N., & Thanh, P. N. (2022, July). Short-term Solar Power Prediction using Long Short-Term Memory in Solar Plant with Deep Learning Machine. In 2022 6th International Conference on Green Technology and Sustainable Development (GTSD) (pp. 651-656). IEEE. DOI: https://doi.org/10.1109/GTSD54989.2022.9989035
[8] Nguyen, T. P., Chew, M. T., & Demidenko, S. (2015, February). Eye tracking system to detect driver drowsiness. In 2015 6th International conference on automation, robotics and applications (ICARA) (pp. 472-477). IEEE. DOI: https://doi.org/10.1109/ICARA.2015.7081194
[9] Thao N. D., Yimin, L., Peng, C., Tien N. Q., Anh T. T. P., Luong N. N., Phuong N. T. (2023). Tourism demand prediction based deep learning long short-term memory: case study in Vietnam. In 2023 International Conference on Science, Education, and Viable Engineering.
[10] Thao N. D., Minh B. T., Cuong P. V., Luong N. N., Phuong N. T. (2023). 15KV HDPE insulator leakage current classification based deep learning gated recurrent unit. In 2023 International Conference on Science, Education, and Viable Engineering.
[11] Liu, W. B Minh B. T., Quyet N.D., Huong L.T., Trang N.T.T., Cho, M.Y., Thao N.D., Phuong N.T. (2024). A Failure Diagnosis Approach for Firefighting Pump based Deep Learning GRU Methodology. International Conference on System Science and Engineering (ICSSE)
[12] Liu, W. B Minh B. T., Tien N.Q., Van P.T., Cho, M.Y., Thao N.D., Phuong N.T. (2024). Failure Classified Method for Diesel Generators based Long Short-Term Memory Approach. International Conference on System Science and Engineering (ICSSE)
Research Areas:
•Smart Power System
•Application of AI in Power System
•Application of AI in AIoT System
•Optimized Algorithm in Power System
•Renewable Energy
•Smart Microgrid
•Deep Learning Machines
•Artificial Neural Networks
•Machine Learning
Artificial Intelligence Techniques